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Single-phase equivalent

3-Phase Generator
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Just like 3-phase loads, it is useful to look at 

just a single phase of the generator.

Equivalent circuit of a 

synchronous generator
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 EAN is the phase voltage of the a-phase Ia is the 

line current

 Einduced is the induced armature voltage. 

 RS is the resistance of the generator’s stator coil.

 XS is the synchronous reactance of the stator coil.
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Equivalent circuit of a 

synchronous generator
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Equivalent circuit of a 

synchronous generator

Assuming that the generator is connected to a lagging load, 

the load current IA will create a stator magnetic field BS, which 

will produce the armature reaction voltage Estat. Therefore, the 

phase voltage will be

A statV E E  

The net magnetic flux will be

net R SB B B 
Rotor field Stator field

Note that the directions of the net magnetic flux and the phase 

voltage are the same.
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Equivalent circuit of a 

synchronous generator

Assuming that the load reactance is X, the armature reaction 

voltage is
stat AE jXI 

The phase voltage is then
A AV E jXI  

Armature reactance can be modeled 

by the following circuit…

However, in addition to armature 

reactance effect, the stator coil has a 

self-inductance LA (XA is the 

corresponding reactance) and the stator 

has resistance RA. The phase voltage is 

thus
A A A A AV E jXI jX I RI    
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Equivalent circuit of a 

synchronous generator

Often, armature reactance and self-inductance are combined 

into the synchronous reactance of the machine:

S AX X X 

A S A AV E jX I RI   

Therefore, the phase voltage is

The equivalent circuit of a 3-phase 

synchronous generator is shown.

The adjustable resistor Radj controls 

the field current and, therefore, the 

rotor magnetic field.
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Equivalent circuit of a 

synchronous generator

A synchronous generator can be Y- or -connected:

The terminal voltage will be

3T TV V for Y V V for       
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Equivalent circuit of a 

synchronous generator

Note: the discussion above assumed a balanced load on the generator!

Since – for balanced loads – the three phases of a 

synchronous generator are identical except for phase angles, 

per-phase equivalent circuits are often used.
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Phasor diagram of a 

synchronous generator

Since the voltages in a synchronous generator are AC voltages, 

they are usually expressed as phasors. A vector plot of voltages 

and currents within  one phase is called a phasor diagram.

A phasor diagram of a synchronous 

generator with a unity power factor 

(resistive load)

Lagging power factor (inductive load): 

a larger than for leading PF internal 

generated voltage EA is needed to form 

the same phase voltage.

Leading power factor (capacitive load).

For a given field current and magnitude 

of load current, the terminal voltage is 

lower for lagging loads and higher for 

leading loads.
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Phasor Diagram of Unsaturated 

Cylindrical Alternators 

Assume that the synchronous generator is loaded with a 

lagging power factor load. 

From the phasor diagram shown in next  Fig, it is clear that 

the terminal voltage is decreased  from  its  no-load  value  

Ef to  its  loaded  value  Va (for  a  lagging  power  factor).  

This  is because of: Drop due to armature resistance, IRa & 

drop due to leakage reactance, IXL and drop due to 

armature reaction IXa . 

Phasor 

diagram for 

synchronous 

generator (p.f. 

Lag) 

 Lagging power factor 
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The angle (δ) between the no-load voltage (Ef ) and the 

terminal voltage (Va ) is called the load angle or (power angle) 

and it is positive value in case of alternators. 

The  DC voltage (Excitation voltage) produces  a  flux (Φf )  or  

(field  mmf Ff ).  

If  the armature  circuit  is  closed  by  an  electric  load,  the  

armature  reaction  (Φa )  or  (armature mmf Fa )  is  produced. 

These  two  fluxes  may  support  each  other or  oppose  each  

other depend on the load power factor to produce the air-gap or 

resultant flux (Φr ) or (resultant mmf Fr ). 

 From the phasor diagram shown in last Fig. 

 Since Fr < Ff this means that Fa oppose Ff

 Since Va < Ef this is called over-excited alternator 

Phasor Diagram of Unsaturated 

Cylindrical Alternators cont… 

 Lagging power factor
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 Leading power factor

Assume that the synchronous generator is 

loaded with a leading power factor load. From 

the phasor diagram shown in next Fig. it is clear 

that the terminal voltage is increased from its 

no-load value Ef

Phasor 

diagram for 

synchronous 

generator (p.f. 

Lead) 

From the phasor diagram shown in  last Fig. 

Since Fr > Ff this means that Fa support Ff

Since Va > Ef this is called under-excited alternator 
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Assume that the synchronous generator is loaded with a unity 

power factor load.  From the phasor diagram shown in next  

Fig.  it is clear that the terminal voltage is decreased from its 

no-load value Ef (similar to lagging power factor) 

Phasor diagram 

for synchronous 

generator (p.f.

unity) 

From the phasor diagram shown .

Since Fr < Ff this means that Fa oppose Ff

Since Va < Ef this is called over-excited alternator 

Unity power factor 
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Analytical Representation of 

Phasor Diagram 

Consider the phasor diagram of 3-phase alternator at 

lagging p.f. as shown. 

Alternator phasor diagram at lagging p.f 

We can describe this phasor 

diagram by two equations: 

Horizontal Analysis: 

Vertical Analysis: 

By dividing (2) by (1), we obtain: 
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Once the angle (δ) is known, we can obtain the excitation 

voltage Ef . 

Now, if Ra is neglected, the phasor diagram is shown in next 

fig

Approximate phasor at lag p.f 

Equations (1) and (2) can 

be rewritten by replacing 

Ra =0 as: 

Analytical Representation of 

Phasor Diagram cont… 
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Horizontal Analysis: 

Vertical Analysis: 

By dividing (4) over (3), we obtain: 

Once the angle (δ) is known, we can obtain the excitation 

voltage Ef . 

Analytical Representation of 

Phasor Diagram cont… 
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By the same way, we can describe the phasor 

diagram in case of leading power factor 

by two equations: 

Alternator phasor 

diagram at leading p.f

Horizontal Analysis: 

Vertical Analysis: 

By dividing (7) over (6), we obtain: 

Analytical Representation of 

Phasor Diagram cont… 
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Once the angle (δ) is known, we can obtain the 

excitation voltage Ef . 
Now, if R a  is neglected, the phasor diagram is shown in 

next Fig. . 

Approximate phasor at 

leading p.f 

Horizontal Analysis: 

Vertical Analysis: 

By dividing (9) by (8), we obtain: 

Once the angle (δ) is known, we can obtain the excitation 

voltage Ef . 

Analytical Representation of 

Phasor Diagram cont… 
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From  the  explained phasor  diagrams given in  

above ,  we  notice that V  is  always  behind Ef , 

this means the power angle (δ) is always positive, 

and this is the remarkable  notice on the phasor 

diagram of synchronous generators. 

Analytical Representation of 

Phasor Diagram cont… 
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Power and torque in 

synchronous generators

A synchronous generator needs to be connected to a prime 

mover whose speed is reasonably constant (to ensure constant 

frequency of the generated voltage) for various loads.

The applied mechanical power
in app mP  

is partially converted to electricity

3 cosconv ind m A AP E I   

Where  is the angle 

between EA and IA.

The power-flow 

diagram of a 

synchronous generator.
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Power and torque in 

synchronous generators
The real output power of the synchronous generator is

3 cos 3 cosout T L AP V I V I  

The reactive output power of the synchronous generator is

3 sin 3 sinout T L AQ V I V I  

Recall that the power factor angle  is the angle between V and IA and not

the angle between VT and IL.

In real synchronous machines of any size, 

the armature resistance RA << XS and, 

therefore, the armature resistance can be 

ignored. Thus, a simplified phasor 

diagram indicates that

sin
cos A

A

S

E
I

X


 
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Power and torque in 

synchronous generators
Then the real output power of the synchronous generator can 

be approximated as

3 sinA

out

S

V E
P

X

 


We observe that electrical losses are assumed to be zero since 

the resistance is neglected. Therefore:

conv outP P

Here  is the torque angle of the machine – the angle between 

V and EA.
The maximum power can be supplied by the generator when  = 900:

max

3 A

S

V E
P

X



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Power and torque in 

synchronous generators
The maximum power specified by last equation is called the static stability 

limit of the generator. Normally, real generators do not approach this limit: 

full-load torque angles are usually between 150 and 200.

The induced torque is

sinind R S R net R netkB B kB B kB B     

Notice that the torque angle  is also the angle between the 

rotor magnetic field BR and the net magnetic field Bnet.

Alternatively, the induced torque is

3 sinA

ind

m S

V E

X

 




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