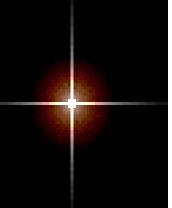
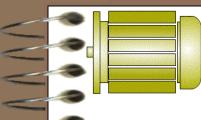


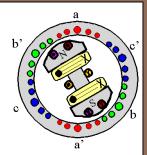
ELECTRICAL MACHINES III



SPRING 2018

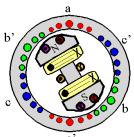
Dr: MUSTAFA AL-REFAI



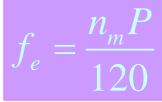


LECTURE 10 SYNCHRONOUS GENERATOR

Rotation speed of synchronous generator

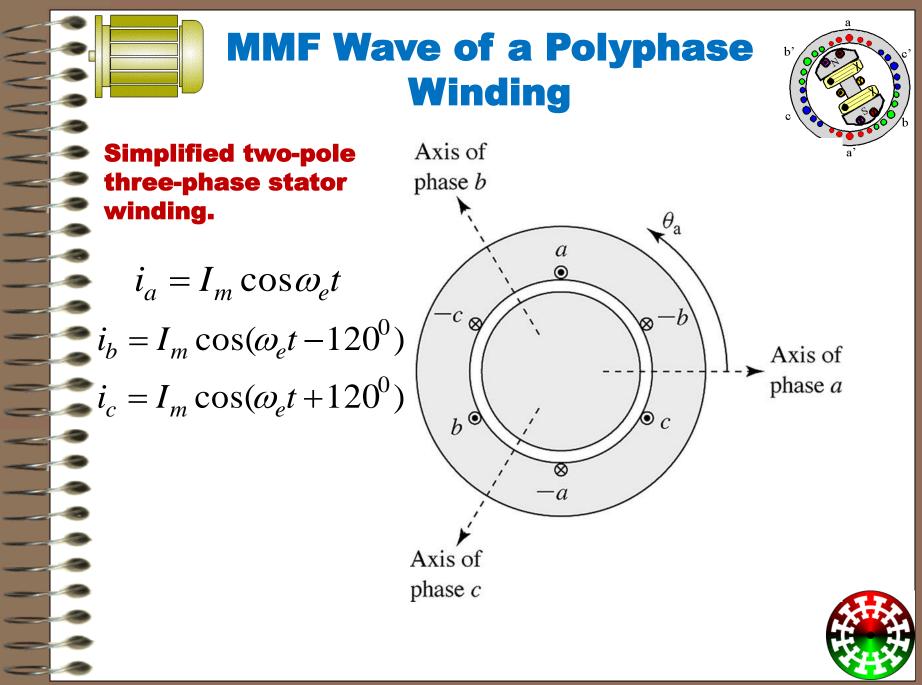


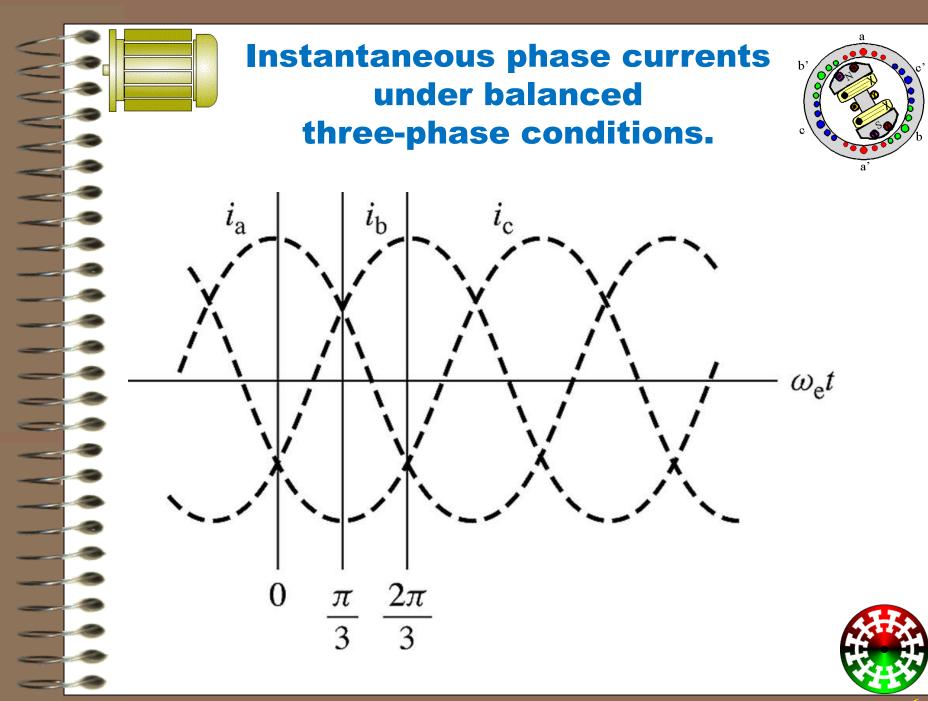
By the definition, synchronous generators produce^a electricity whose frequency is synchronized with the mechanical rotational speed.



Where f_e is the electrical frequency, Hz; n_m is mechanical speed of magnetic field (rotor speed for synchronous machine), rpm; P is the number of poles.

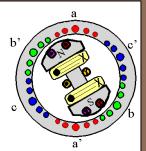
Steam turbines are most efficient when rotating at high speed; therefore, to generate 60 Hz, they are usually rotating at 3600 rpm and turn 2-pole generators. Water turbines are most efficient when rotating at low speeds (200-300 rpm); therefore, they usually turn generators with many poles.





Magnetomotive Force (mmf) of AC Windings

N-turn coil



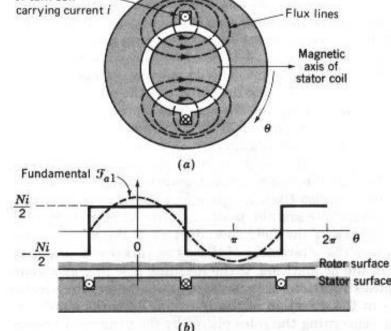
M.m.f. of a coil \Box the variation of magnetic potential difference along the air –gap periphery is of rectangular waveform and of magnitude $\frac{1}{2}Ni$

□ The amplitude of mmf wave varies with time, but not with space

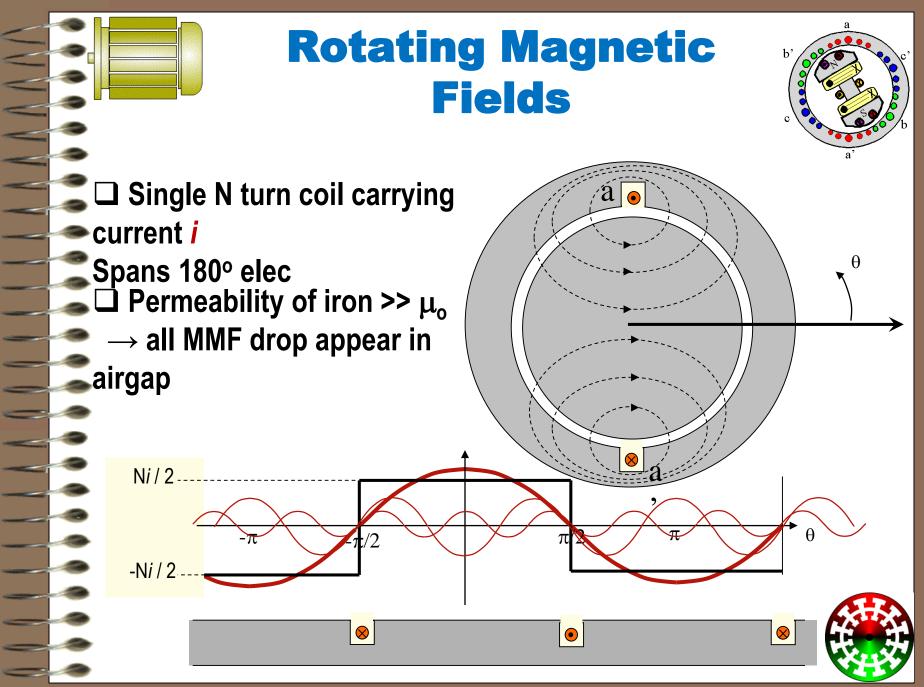
□ The air –gap mmf wave is time-variant but space

invariant

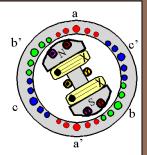
The air –gap mmf wave at any instant is rectangular



The mmf of a concentrated full-pitch coil.



Rotating Magnetic Fields cont...



The fundamental component of rectangular $F_{a1} = \frac{4}{\pi} \cdot \frac{Ni}{2} \cos \alpha = F_{1p} \cos \alpha$ wave is found to be Where

 α = electrical space angle measured from the magnetic axis of the stator coil

Here F_{1p}, the peak value of the sine mmf wave for a 2-pole machine is given by

When $i=0 \rightarrow F_{1p}=0$ $i=I_{max}=\sqrt{2}I$

 $F_{1p} = \frac{4}{\pi} \cdot \frac{Ni}{2} AT per pole$

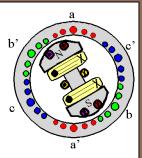
For 2-pole machine

For p-pole machine

$$F_{1pm} = \frac{4}{\pi} \cdot \frac{N\sqrt{2I}}{2} AT \ per \ pole$$

$$F_{1pm} = \frac{4}{\pi} \cdot \frac{N\sqrt{2}I}{P} AT per pol$$

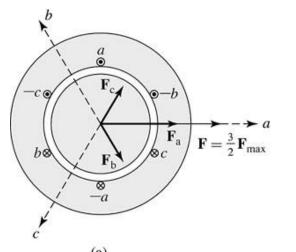
M.M.F of Distributed Winding

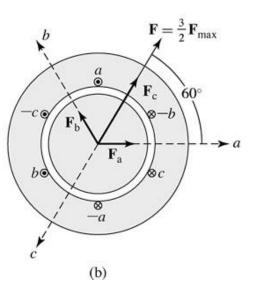


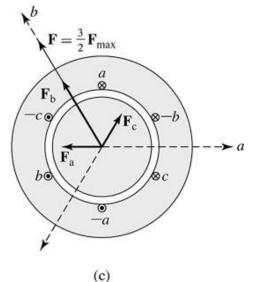
The mmf distribution along the air gap periphery depends on the nature of slots, winding and the exciting current

□ The effect of winding distribution has changed the shape of the mmf wave, from rectangular to stepped

The production of a rotating magnetic field by means of three-phase currents.

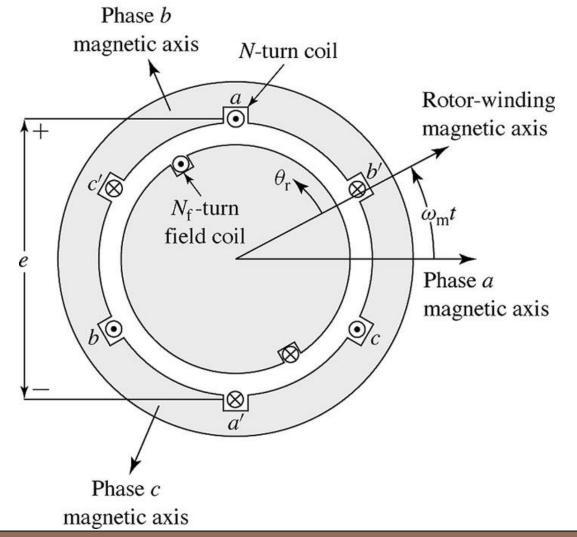




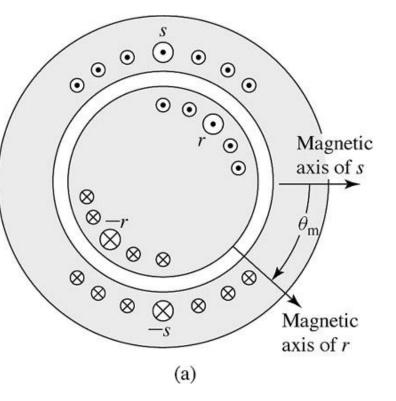


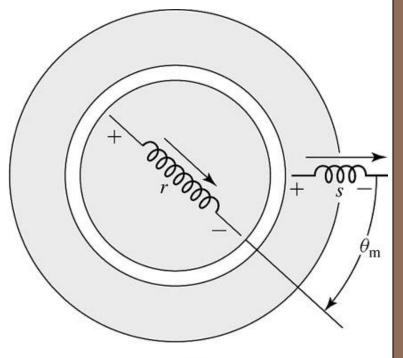
 \mathbf{b}^{i}

Cross-sectional view of an elementary threephase ac machine.



Elementary two-pole machine with smooth air gap: (a) winding distribution and (b) schematic representation.





(b)

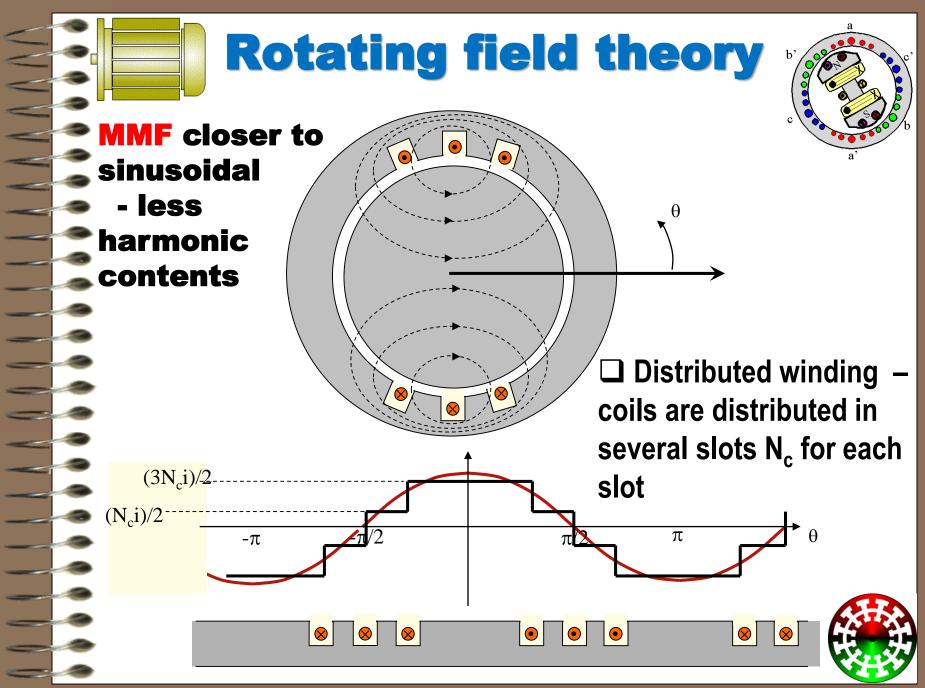
Elementary two-pole machine with smooth air gap: cont.. The fundamental component of the resultant *mmf can be* obtained by adding the fundamental components of these individual coils, and it can expressed as $F_{a1} = \frac{4}{\pi} \frac{k_p N_{ph}}{P} i_a \cos\theta$ (a)] where *Nph is the total* Space-fundamental Current sheet number of turns of the Axis of phase a phase winding, which is formed by these coils, kd is known as the distribution factor of the winding, which is defined bv The mmf of one phase of a distributed two-pole three-phase winding with full-pitch coils.

Axis of

phase a

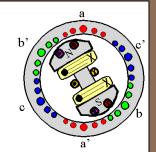
mmf wave

 $-2n_ci_c$



Rotating field theory cont..

Let	$i_a = I_m \cos \omega t$, and we have
	$F_{a1} = \frac{4}{\pi} \frac{k_w N_{ph}}{P} I_m \cos \omega t \cos \theta$
	$=F_m\cos\omega t\cos\theta$
where	$F_m = \frac{4}{\pi} \frac{k_w N_{ph}}{P} I_m$



The *mmf of a distributed phase winding is a function of both space and time. When plotted* at different time instants as shown below, we can see that it is a pulsating sine wave. We call this type of *mmf as a pulsating mmf.*

Because $\cos \alpha \cos \beta = \frac{\cos(\alpha - \beta) + \cos(\alpha + \beta)}{2}$, the above expression of the *mmf*

fundamental component can be further written as

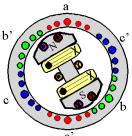
$$F_{a1} = \frac{F_m}{2}\cos(\theta - \omega t) + \frac{F_m}{2}\cos(\theta + \omega t)$$
$$= F_m + F_m$$

EE552 SPRING 2018

DR. MUSTAFA AL-REFAI



Magnetic Field of Three Phase Windings



Once we get the expression of *mmf for a single phase* " *winding, it is not difficult to write* the expressions of *mmf's for three single phase windings placed* 120Deg (electrical) *apart and* excited by balanced three phase currents:

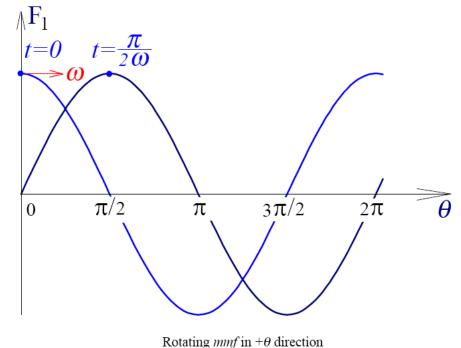
$$\begin{split} F_{a1} &= F_m \cos \omega t \cos \theta = \frac{F_m}{2} \cos(\theta - \omega t) + \frac{F_m}{2} \cos(\theta + \omega t) \\ F_{b1} &= F_m \cos(\omega t - 120^\circ) \cos(\theta - 120^\circ) \\ &= \frac{F_m}{2} \cos(\theta - \omega t) + \frac{F_m}{2} \cos(\theta + \omega t - 240^\circ) \\ F_{c1} &= F_m \cos(\omega t - 240^\circ) \cos(\theta - 240^\circ) \\ &= \frac{F_m}{2} \cos(\theta - \omega t) + \frac{F_m}{2} \cos(\theta + \omega t - 480^\circ) \end{split}$$

Magnetic Field of Three Phase Windings cont...

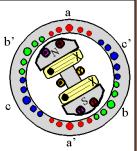
Therefore, the resultant *mmf* generated by a three phase winding is

$$F_{1} = F_{a1} + F_{b1} + F_{c1} = \frac{3F_{m}}{2}\cos(\theta - \omega t)$$

Note that



Magnetic Field of Three Phase Windings cont...



The above diagram plots the resultant *mmf F1 at two* specific time+ θ stants: t=0 $a(a \rightarrow b \rightarrow c)$ $t=\pi/2\omega$.

It can be readily observed that **F**1 is a rotating *mmf in the direction*

with a constant magnitude 3F_m/2. The speed of this rotating mmf can be calculated as

and

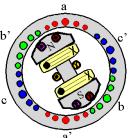
respectively

 $\omega_f = \frac{d\theta}{dt} = \frac{\pi/2}{\pi/2\omega} = \omega$ rad/s (electrical)

When expressed in mechanical radians per second and revolutions per minute, the speed of the rotating mmf can be expressed as $\omega_r = \frac{\omega}{\pi d_r}$ rad/s (mechanical)

$$\omega_f = \frac{\omega}{P/2}$$
 rad/s (mechan)
 $n_f = \frac{60\omega_f}{2\pi} = \frac{120f}{P}$ rev/min

Magnetic Field of Three Phase Windings cont...



Again, for a machine with uniform air gap, the above analysis for *mmf is also* valid for the magnetic field strength and the flux density in the air gap.
Therefore, *the speed of a rotating magnetic field is proportional to the*

frequency of the three phase excitation currents, which generate the field.

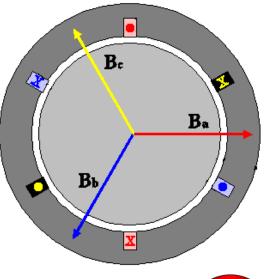
Rotating Magnetic Field

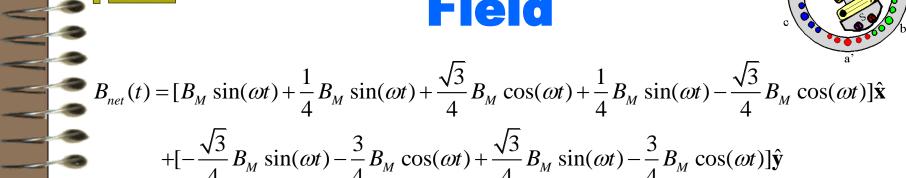
 $B_{net}(t) = B_a(t) + B_b(t) + B_c(t)$

 $= B_M \sin(\omega t) \angle 0^\circ + B_M \sin(\omega t - 120^\circ) \angle 120^\circ + B_M \sin(\omega t - 240) \angle 240^\circ$

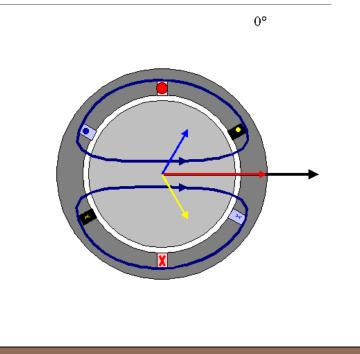
 $= B_M \sin(\omega t) \hat{\mathbf{x}}$

$$-[0.5B_{M}\sin(\omega t - 120^{\circ})]\hat{\mathbf{x}} - [\frac{\sqrt{3}}{2}B_{M}\sin(\omega t - 120^{\circ})]\hat{\mathbf{y}}$$
$$-[0.5B_{M}\sin(\omega t - 240^{\circ})]\hat{\mathbf{x}} + [\frac{\sqrt{3}}{2}B_{M}\sin(\omega t - 240^{\circ})]\hat{\mathbf{y}}$$



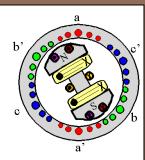


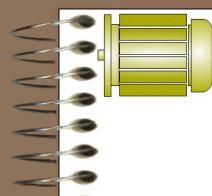
= $[1.5B_{M}\sin(\omega t)]\hat{\mathbf{x}} - [1.5B_{M}\cos(\omega t)]\hat{\mathbf{y}}$

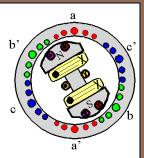


DR. MUSTAFA AL-REFAI









PresenterMedia

EE552 SPRING 2018

DR . MUSTAFA AL-REFAI

