

10 10 10 10 -10 a 10 a a
 SYNCHRONOUS MACHINES

Stator: stationary portion of the machine \square Rotor: rotating portion of the machine \square Shaft: the stiff rod that the rotor is

4

Basic Concepts of A electrical Machine

- Load current: the current that varies with load
\square Magnetizing current: provide magnetic field and independent of load
Armature: the winding that carries only load current
[Field: the winding that carries only magnetizing current
\square dc machine: the input/output current is D.C. ac machine: the input/output current is A.C; two categories:
> synchronous machine
$>$ induction machine (no field winding, similar to transformer)

				Lecation

Electrical vs Mechanical Frequency

At steady state $f_{e}=\frac{P}{2} f_{m}$
mechanical speed n_{m} revolution/minute (rpm)

$$
f_{m}=n_{m} \frac{1}{60}=\frac{n_{m}}{60} \quad \mathrm{rev} / \mathrm{second}
$$

Cylindrical Rotor

Designed with 2 or 4 poles for high speed operation - 3600 rpm for two pole machine at 60 Hz machine at 60 Hz Centrifugal forces limit rotor diameter \square High power, high speed rotors (for 1000 - 1500 MVA) tend to be very long

Cylindrical Rotor Synchronous Machine

Synchronous Machine

- Round Rotor

Machine

-The stator is a ring shaped laminated iron-core with slots
-Three phase winding are placed in the slots.
-Round solid iron roto with slots.
-A single winding is placed in the slots.

Stator with

-Low speed, multi-pole generators -Large diameter to accommodate poles口May be equipped with squirrel cage damper winding
 -Significant variation in reluctance of air-gap

- Salient Rotor Machine
-The stator has a laminated iron-core with slots and three phase windings placed in the slots.
-The rotor has salient poles excited by dc current.
-DC current is supplied to
 the rotor through sliprings and brushes.

