

EE552 ELECTRICAL MACHINES III

LECTURE 8

10

LECTURE NOTES

ELECTRICAL MACHINES III

SPRING 2018

Dr: MUSTAFA AL-REFAI

LECTURE 8 SYNCHRONOUS GENERATOR

EE552 SPRING 2018

DR. MUSTAFA AL-REFAI

DR. MUSTAFA AL-REFAI

The number of conductors (C) in an any coil-side is equal to the number of turns (N) in that coil.

Single- layer and double layer windings.

- **Single- layer winding**
- One coil-side occupies the total slot area
- Used only in small ac machines

one coil-side per slot

- **Double- layer winding**
- Slot contains even number (may be 2,4,6 etc.) of coil-sides in two layers
- Double-layer winding is more common above about 5kW machines

4-coil-sides per slot

Two coil –sides per slot

The advantages of double-layer winding over single layer winding are as follows:

a. Easier to manufacture and lower cost of the coils

- **b. Fractional-slot winding can be used**
- c. Chorded-winding is possible
- d. Lower-leakage reactance and therefore, better performance of the machine e. Better emf waveform in case of generators

Pole – pitch. A pole pitch is defined as the peripheral distance between

identical points on two adjacent poles. Pole pitch is always equal to 180 electrical.

Coil-span or coil-pitch. The distance between the two coil-sides of a coil is called coil-span or coil-pitch. It is usually measured in terms of teeth, slots or electrical degrees.

 \Box If the coil-span (or coil-pitch) is equal to the pole-pitch, then the coil is termed a full-pitch coil.

□in case the coil-pitch is <u>less</u> than pole-pitch, then it is called *chorded*, *short-pitch* or *fractional-pitch coil*

- > if there are S slots and P poles, then pole pitch Q = S/p slots per pole
- > if coil-pitch y = S/P, it results in *full-pitch winding*

а

9

In AC armature windings, the separate coils may be connected in several different manners, but the two most common methods are lap and wave

- In polyphase windings it is essential that
- *****The generated **emfs of all the phases are of equal magnitude**

The waveforms of the phase emfs are identical The frequency of the phase emfs are equal

***** The phase emfs have mutual time-phase displacement

 2π

of electrical radians. β

*****Here **m** is the number of phases of the a.c. machine.

Electrical Radians and Synchronous Speed (cont'd)

rads./sec.

Hz

$$\theta_e = \frac{P}{2}\theta_m = p\,\theta_m \quad \text{elec}$$

electrical rads.

$$\omega_{e} = \frac{P}{2}\omega_{m} = p\omega_{m} \quad \text{electrical}$$

frequency of
$$f = \frac{P}{2} \frac{N}{60} = p \frac{N}{60} = p \frac{\omega_m}{2\pi}$$

induced voltage
where P= # of poles
p=# of pole pairs and

N=synchronous speed of rotor (rpm)

EE552 SPRING 2018

Flux per Pole

Consider a sinusoidally distributed flux density, B(θ_e)=B_{pk}cos θ_e . The flux per pole is given by:

$$\phi_{pole} = \int_{-\pi_e/2}^{\pi_e/2} B_{pk} \cos\theta_e lRd\theta_m = \frac{4}{P} B_{pk} lR$$

Induced Voltage (cont'd)

$$\lambda(t) = N\phi_{pole}\cos(\omega_e t)$$

∴ induced voltage in full-pitch coil is given by:

$$e = \frac{d\lambda}{dt} = N \frac{d\phi_{pole}}{dt} \cos \omega_e t - \omega_e N \phi_{pole} \sin \omega_e t$$

transformer voltage speed voltage

RMS Value of Induced Voltage

RMS value of sinusoidally varying speed voltage term is:

$$E_{rms} = 4.44 f N \phi_{pole}$$

In high power ac machines may have distributed or short-pitch windings. Use distribution and pitch factors (k_d and k_p respectively) to account for these designs. The rms value of the induced voltage under these conditions becomes:

$$E_{rms} = 4.44 f k_w N \phi_{pole}$$

where $k_w = k_d k_p$ is the winding factor.

Distribution Factor

Phase windings may have series/parallel coils under a different pole-pair. Within each pole-pair region, the coils of a distributed winding are spread out over several pairs of slots.

Distribution Factor (cont'd)

The voltages induced in component coils for a single phase winding occupying adjacent slots will be separated by the slot angle separating them α_s^e (electrical angle subtended by arc between two

Ē_{c1} Ē_{c2} Ē_{c3} + - + - + ---∞--∞--∞----+ Ē_{pole} -

Coils of a pole

Result of coil's phasor voltages

Resultant voltage of series fullpitch coils under each pole.

Distribution Factor (cont'd)

The distribution factor can be defined as the ratio of the resultant voltage with coils distributed to resultant voltage if coils were in one location, i.e.

 $k_{d} = \underline{\text{Resultant voltage of coils under one pole-pair} |E_{pole}|}$ Arithmetic sum of coil voltages $\Sigma_{i} |E_{ci}|$

If a phase winding has q coils/phase/pole,

 $|E_{pole}| = 2R_E sin(q\alpha_s^{e}/2)$ and $|E_{ci}| = 2R_E sin(\alpha_s^{e}/2)$, and

 $k_d = \frac{\sin(q\alpha_s^e/2)}{q\sin(\alpha_s^e/2)}$

Pitch Factor

Short-pitching is when coils with less than one pole-pitch are used.

(b) Resultant of coil-side phasor voltages

Resultant of coil-side voltages of a fractional-pitch coil.

Pitch Factor (cont'd)

Short-pitching is used in machines with fractionalslot windings (non-integral slots/pole or slots/pole/phase) in a double-layer winding arrangement. Allows for a finite set of stampings with a fixed number of slots to be used for different speed machines.

Also, short-pitching can be used to *suppress certain harmonics in the phase emfs*. Although short-pitching also offers shorter end connections, the *resultant fundamental phase emf* is reduced.

Pitch Factor (cont'd)

The pitch factor k_p is defined by:

Resultant voltage in short-pitch coil
 Arithmetic sum of voltages induced in full coil

With sinusoidal voltages, each coil voltage is the phasor sum of its two coil-side voltages. Thus, for coil a, $E_{ca} = E_a + E_{-a}$ $=> \qquad k_p = \frac{\tilde{E}_{ca}}{2|\tilde{E}|} = \cos \frac{\theta_e}{2}$

PresenterMedia

EE552 SPRING 2018

DR . MUSTAFA AL-REFAI

